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Abstract. In the last four decades there has been enormous progress in Shape
from Shading (SfS) with respect to both modelling and numerics. In particular
approaches based on advanced model assumptions such as perspective cameras
and non-Lambertian surfaces have become very popular. However, regarding the
positioning of the light source, almost all recent approaches still follow the sim-
plest geometric configuration one can think of: The light source is assumed to be
located exactly at the optical centre of the camera. In our paper, we refrain from
this unrealistic and severe restriction. Instead we consider a much more general
SfS scenario based on a perspective camera, where the light source can be posi-
tioned anywhere in the scene. To this end, we propose a novel SfS model that is
based on a Hamilton-Jacobi equation (HJE) which in turn is formulated in terms
of spherical coordinates. This particular choice of the modelling framework and
the coordinate system comes along with two fundamental contributions: While on
the modelling side, the spherical coordinate system allows us to derive a gener-
alised brightness equation – a compact and elegant generalisation of the standard
image irradiance equation to arbitrary configurations of the light source, on the
numerical side, the formulation as Hamilton-Jacobi equation enables us to de-
velop a specifically tailored variant of the fast marching (FM) method – one of
the most efficient numerical solvers in the entire SfS literature. Results on syn-
thetic and real-world data confirm our theoretical considerations. They clearly
demonstrate the feasibility and efficiency of the generalised SfS approach.

Keywords: shape from shading, Hamilton-Jacobi equation, viscosity solution,
fast marching, general light source configuration, spherical coordinates

1 Introduction

Since the early works of Rindfleisch [1] and Horn [2] more than four decades ago,
Shape from Shading (SfS) is considered one of the key problems in computer vision.
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Given the information about the reflectance of the surface and the position of the light
source, its goal is to reconstruct the 3D depth of an object in a scene from a single
2D input image. In practice, SfS has a wide field of interesting applications. They range
from classical large scale problems such as astronomy [1] or terrain reconstruction [3, 4]
to challenging small scale tasks such as dentistry [5] or endoscopy [6–9].

In order to make both the modelling and the computation tractable, early SfS approa-
ches relied on strongly simplified assumptions. Since these approaches were first used
for large scale problems such as astronomy, they were typically based on a camera
model with orthographic projection, a light source that illuminates the scene from in-
finity, as well as a physically incorrect light transport that neglects attenuation [2]. Not
surprisingly, these early methods worked reasonably well in the case of large scale
problems – the scenario they were designed for. However, if applied to tasks, where
the distance of the camera to the object is small, such methods revealed a consistently
poor performance in terms of reconstruction quality [10, 11]. Moreover, independent
of the distance to the object, the corresponding mathematical models turned out to be
severely ill-posed showing a strong dependency of the result on the initialisation [12].
Evidently, all these simplified assumptions did not make the SfS problem easier but
actually rendered it more difficult from both a theoretical and a practical viewpoint.

This observation led to significant progress in the last few years. Nowadays, a per-
spective camera model [7, 13, 14] based on the inverse square law for light attenuation
[12, 15] has become the standard assumption of recent SfS methods including those
techniques with more advanced, i.e. non-Lambertian, reflection models [16, 17]. More-
over, with the consideration of the perspective camera model, the assumed position of
the light source was moved from infinity to the optical centre of the camera [7]. While,
this choice is very convenient from a computational viewpoint, it is obvious that a light
source cannot be located at this place. This holds particularly for flash photography,
where the position of the optical centre and the light source differ by construction.

In face of these considerations, it is surprising that there has hardly been any effort
in the literature to model perspective SfS with an arbitrary position of the light source.
In fact, there is only one work known to the authors, where a variational model for
endoscopic SfS was proposed with a position of the light source different than the one
in the optical centre [9]. This approach, however, suffers from two main drawbacks. On
the one hand, the approach does not make use of proper discretisations of the hyperbolic
terms such as e.g. upwind-type schemes [18]. This, however, would be necessary to
ensure solutions in the viscosity sense [19]. On the other hand, the numerical algorithm
proposed for this method is quite slow. In fact, the authors rely on a simple Jacobi-like
scheme that is moreover explicit in the irradiance equation [20].

Contributions. In this paper we address all of the aforementioned problems. To this
end, we formulate the perspective SfS problem in terms of a Hamilton-Jacobi (HJE)
equation based on spherical coordinates. While such approaches have already been
proposed for the standard case with the light source being located at the optical centre of
the camera [15, 21], we demonstrate that employing such a spherical coordinate system
is perfectly suited for the general case where the position of the light source can be
arbitrary. In this context, our contributions are twofold:
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1. On the modelling side, we derive a novel mathematical model for SfS in spherical
coordinates which we call the generalised brightness equation. While the model
itself can handle the most general geometry with the light source not being located
in the optical centre of the camera, its compact and elegant structure suggests that
this approach is the natural and intuitive way to formulate this problem.

2. On the numerical side, we develop a highly efficient numerical algorithm for solv-
ing the resulting highly non-linear HJE. This specifically tailored algorithm not
only extends the popular fast marching (FM) method [22] by an iterative correction
step but also guarantees to find solutions in the viscosity sense at the same time.

Summarising, we propose a perspective SfS approach that combines the applicability
of a general SfS method with the efficiency of FM based approaches.

Organisation. In Section 2 we start by discussing the general perspective SfS frame-
work. In Section 3 we then describe the representation of a surface in both Cartesian and
the spherical coordinates. This allows us to compute the corresponding surface normal
in Section 4 and finally to derive a compact formulation of the brightness equation for
the general case. in Section 5. After we discuss our extended variant of the FM scheme
in to solve this equation efficiently in Section 6, we present the results of our method in
Section 7. The paper is concluded by a summary in Section 8.

2 Perspective Shape from Shading

Let us consider the general setting for perspective SfS with focal length f, where the
position of the light source can be anywhere in the scene. Let us furthermore assume
that the surface is Lambertian with uniform albedo and the light fall-off follows the
inverse square law. Then, the brightness of the acquired image I is given by the so-
called brightness equation [12]:

I(x) =
1

r2

(
n

|n|
· L
)
. (1)

Here, x = (x1, x2)
> ∈ Ω ⊂ R2 denotes a pixel position in the rectangular image plane,

· the scalar product, L the normalised light direction, n the surface normal vector, | · |
the Euclidean norm, and r the distance from the light source to the surface point.

Please note that in the literature this equation is typically parametrised such that the
light source is located in the optical centre of the camera [12, 16, 17]. We will denote
this specific variant of Eq. (1) as restricted brightness equation. In our approach, how-
ever, we follow a more general approach. We allow the light source to be everywhere
in the image and parametrise the surface and thus the surface normal accordingly.

A sketch that illustrates the general scene geometry that comes with our model is
depicted in Fig. 1. As one can see, w.l.o.g. we have chosen the origin of the coordinate
system such that it coincides with the location of the light source. This decision will
allow us to derive a mathematical model that is compact and elegant at the same time.
As a first step towards this model, we have to parametrise the surface of the object
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Fig. 1. Cross section of a 3-D model for perspective SfS with arbitrary position of the light source.
The distance between the light source L and the point S on the surface is denoted by r in Eq. (1).

to compute the corresponding surface normal. This will be done in the next section.
Afterwards we can derive the general brightness equation – the brightness equation
that is parametrised such that it allows for an arbitrary position of the light source.

3 Parametrisation of the Surface

When it comes to the parametrisation of the object surface, recent SfS methods make
use of standard Cartesian coordinates [9, 16, 17]. In the general case, however, such
coordinates have one decisive drawback illustrated in Fig. 2(a) and Fig. 2(b): When the
light source is not located in the optical centre of the camera, the critical points, i.e. the
points of the object with largest local height, are not any longer the brightest points, i.e.
the points that are closest to the light source. In short: Local intensity maxima do not
identify critical points (local surface maxima). This is due to the fact that in SfS with
Cartesian coordinates, the depth is measured along the x3-axis (Fig. 2: vertical axis).
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(a) Light source located at optical centre.
Brightest and highest point (B, H) coincide.

(b) Light source not located at optical centre.
Brightest and highest point (B, H) differ(!).

Fig. 2. Relationship between the brightest point B (critical point) and the highest point H of
the object depending on the scene geometry. The problem of differing H and B is inherent to
Cartesian coordinates. In a spherical coordinates with origin at the light source, B is always H .

Since identifying critical points is required to apply efficient algorithms of fast
marching (FM) type [22–26] to solve the brightness equation in (1), we propose the
following solution to the problem: By considering a spherical coordinate system with
the origin placed at the position of the light source, we measure the depth and thus the
critical points from the viewpoint of the light source. Per construction, in such a coor-
dinate system, the locally brightest points in the image coincide again with the critical
points. Please recall in this context that (i) the albedo is assumed to be uniform, (ii) sur-
face normals at local maxima are parallel to the direction of incoming light (per defini-
tion of local maxima in our new coordinate system) and (iii) remaining convex-concave
ambiguities are resolved by the light fall-off factor 1/r2 in the brightness equation [12].

Let us now describe our parametrisation. To this end, we start with standard Carte-
sian coordinates and then derive the corresponding formulation for the spherical case.

3.1 Surface Representation in Cartesian Coordinates

Considering Cartesian coordinates and following the notation from Fig. 1, the vector
from the camera position C to a point X in the image plane is given by

−−→
CX =

−−→
LX −

−→
LC =

 x1

x2

−(c3 + f)

−
 c1

c2

−c3

 =

x1 − c1x2 − c2
−f

 , (2)

where
−−→
AB stands for a vector with starting point A and endpoint B. Furthermore we

can use (2) to express the vector between the light source L and the surface point S
−→
LS =

−→
LC +

−→
CS =

−→
LC + λ

−−→
CX

=

 c1

c2

−c3

+ λ

x1 − c1x2 − c2
−f

 =

λx1 + (1− λ) c1
λx2 + (1− λ) c2
−(c3 + λ f)

 =:

s1s2
s3

 , (3)
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where λ ∈ R is a scaling factor that we are looking for. In particular, it holds that

|
−→
LS|2 = s21+ s

2
2+ s

2
3 = [c1 + λ (x1 − c1)]2+[c2 + λ (x2 − c2)]2+(c3+λ f)

2 . (4)

In the following, we refrain from estimating the scaling factor λ, but solve for the dis-
tance s21 + s22 + s23 from the light source to the surface directly. To this end, it turns out
once again, that is advantageous to consider the problem in spherical coordinates.

3.2 Surface Representation in Spherical Coordinates

In order to express the distance from the light source to the surface in spherical coordi-
nates, we have to define a suitable basis. Following Fig. 3, we represent the Cartesian
vector r via two angles θ and ϕ, respectively, as well as a radius r:

r = Rx3
(θ) Rx2

(ϕ)

00
r

 =

 cos θ cosϕ − sin θ cos θ sinϕ

sin θ cosϕ cos θ sin θ sinϕ

− sinϕ 0 cosϕ


00
r

 . (5)

Here, the two matrices

Rx3 (θ) =

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , Rx2 (ϕ) =

 cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

 (6)

represent rotations around the x3- and x2-axis. The corresponding orthonormal basis is

eϕ =

 cosϕ cos θ

cosϕ sin θ

− sinϕ

 , eθ =

− sin θ

cos θ

0

 , er =

 sinϕ cos θ

sinϕ sin θ

cosϕ

 , (7)

where [
ϕ

θ

]
=

arccos
s3√

s21 + s22 + s23

arctan
s2
s1

 . (8)

Thus, we can express the distance from the light source to the surface via the relations1s2
s3

 =: r := r er with r =
√
s21 + s22 + s23 . (9)
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Fig. 3. The spherical system employed in this work. x1, x2 and x3 are conventional Cartesian co-
ordinate axes. er, eϕ and eθ stand for basis vectors with respect to each direction in the spherical
system. The distance between the light source L and the point S on the surface corresponds to r.

4 Computation of the Surface Normal

After we have parametrised the distance to the surface in spherical coordinates, we have
to compute the surface normal for each pixel of the input image. This can be done by
first determining the vectors defining the tangent plane – these vectors are given by the
derivatives of the surface with respect to the two directions orthogonal to r, namely θ
and ϕ – and then by computing the cross product to obtain the corresponding normal
vector. Using the definition of r from (9), the surface normal is then given by

n =
∂ (rer)

∂θ
× ∂ (rer)

∂ϕ

=

(
∂ r

∂θ
er + r

∂ er
∂θ

)
×
(
∂ r

∂ϕ
er + r

∂er
∂ϕ

)
=

(
∂ r

∂θ
er ×

∂ r

∂ϕ
er

)
+

(
∂ r

∂θ
er × r

∂ er
∂ϕ

)
+

(
r
∂ er
∂θ
× ∂ r

∂ϕ
er

)
+

(
r
∂ er
∂θ
× r ∂ er

∂ϕ

)
=
∂ r

∂θ

∂ r

∂ϕ
(er × er)︸ ︷︷ ︸

=0

+ r
∂ r

∂θ

(
er ×

∂ er
∂ϕ

)
+ r

∂ r

∂ϕ

(
∂ er
∂θ
× er

)
+r2

(
∂ er
∂θ
× ∂ er

∂ϕ

)

= r
∂ r

∂θ

(
er ×

∂ er
∂ϕ

)
+ r

∂ r

∂ϕ

(
∂ er
∂θ
× er

)
+ r2

(
∂ er
∂θ
× ∂ er

∂ϕ

)
(11)
= r

∂ r

∂θ
(er × eϕ) + r

∂ r

∂ϕ
(sinϕ eθ × er) + r2 (sinϕ eθ × eϕ)

(12)
= r

∂ r

∂θ
eθ + r sinϕ

∂ r

∂ϕ
eϕ − r2 sinϕ er .
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(10)

Thereby we used the following relations that hold by definition

∂ er
∂ϕ

=

 cosϕ cos θ

cosϕ sin θ

− sinϕ

 (7)
= eϕ ,

∂ er
∂θ

=

− sinϕ sin θ

sinϕ cos θ

0

 (7)
= sinϕ eθ . (11)

as well as the fact that (eϕ, eθ, er) constitutes a right-handed system, i.e. we have

er × eϕ = eθ , eϕ × eθ = er , eθ × er = eϕ . (12)

5 Generalised Brightness Equation

After we have computed the surface normal, we are now in the position to set up the
brightness equations for the general case. Following Eq. (1) this requires to evaluate the
expressions n · L and |n|. Based on Fig. 1, the light direction is given by

L = − er . (13)

When plugging (10) and (13) into n and L, respectively, the dot product n ·L becomes

n · L =

(
r
∂ r

∂θ
eθ + r sinϕ

∂ r

∂ϕ
eϕ − r2 sinϕ er

)
· (− er)

= r2 sinϕ

(14)

while the (squared) magnitude of the surface normal is given by the expression

|n|2 = n · n = r2

[(
∂ r

∂θ

)2

+ sin2 ϕ

(
∂ r

∂ϕ

)2

+ r2 sin2 ϕ

]
. (15)

In both cases we have exploited the orthonormality of the basis vectors; see Eq. (12).
Using our results from (14) and (15) in Eq. (1) then gives the brightness equation

I =
1

r2

(
n

|n|
· L
)

⇒ r2 I |n| − n · L = 0

⇒ r3 I

√(
∂ r

∂θ

)2

+ sin2 ϕ

(
∂ r

∂ϕ

)2

+ r2 sin2 ϕ− r2 sinϕ = 0

⇒ I

√
1

r2 sin2 ϕ

(
∂ r

∂θ

)2

+
1

r2

(
∂ r

∂ϕ

)2

+ 1− 1

r2
= 0 (16)

We can further simplify this equation using the following relation:

∇r = 1

r

(
∂ r

∂ϕ

)
eϕ +

1

r sinϕ

(
∂ r

∂θ

)
eθ . (17)
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Thus we finally obtain a very compact and elegant formulation that we will denote as
generalised brightness equation. It is given by the Hamilton-Jacobi equation (HJE):

I

√
|∇r|2 + 1− 1

r2
= 0 . (18)

6 A Fast Marching Scheme for Spherical Coordinates

After we have derived the generalised brightness equation in the previous section, let
us now discuss how it can be efficiently solved for the unknown radial distance field r
(solved in the viscosity sense [24]). For this kind of HJEs so called fast marching (FM)
schemes are among the fastest solvers in the literature [22–26]. Starting from critical
points, such schemes are based on propagating the solution to the remaining points
on the surface. Typically, each pixel is only visited once such that in the optimal case
the performance is linear in the number of pixels [25]. Unfortunately, standard FM
schemes cannot be applied in our case, since they have been designed for eikonal-
type of the form H(·,∇r) without an explicit dependency on r. Moreover, our HJE is
formulated in terms of spherical coordinates such that I actually depends on the solution
r via the parametrised Cartesian pixel position x = (x(θ, ϕ, r), y(θ, ϕ, r))>. Therefore,
we propose the following specifically tailored variant of the FM scheme to solve our
general HJE of type H(·,∇r, r) in spherical coordinates:

1. We identify critical points of the surface based on their brightness (cf. Section 3).
Since their distance to the light source is minimal, we know that ∇r = 0, which in
turn allows us to solve Eq. (18) directly for the radial depth r.

2. The main task of the FM update process is to spread information from the critical
points to the other points on the surface and update them solving Eq. (18). Since our
HJE is highly nonlinear and depends on both r and∇r, we apply the iterative strat-
egy proposed in [17] in the context of nonlinear HJEs for Euclidean coordinates
and solve (18) using the classical regula falsi method. Thereby, spatial derivatives
are discretised using the standard upwind scheme [18]. Since our algorithm works
in spherical coordinates, we propagate the information to neighbouring locations in
terms of θ and ϕ rather than x and y. This also requires to evaluate the brightness
values of the input image at subpixel locations, which is realised in terms of bilinear
interpolation. Moreover, we need an additional correction step: Since the location
to evaluate the image brightness depends on r (see above), we have to update this
brightness value each iteration within our iterative regular falsi framework. The it-
erations are stopped, if the residual of the equation drops below a certain threshold.

3. We proceed to the adjacent locations in terms of θ and ϕ and solve (18) there.
Although the parametrisation is different, the order in which the locations are tra-
versed, is analogue to the Euclidean case (see [17] for details).
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(a) Vase input image. (b) Ground truth. (c) Our method. (d) Standard SfS.

Fig. 4. The Vase experiment.

7 Experiments

Let us now evaluate our perspective SfS method for the general case. To this end, we
have considered both a synthetic and a real-world image.

In our first experiment, we used our method to reconstruct the shape of a vase. The
corresponding input image is depicted in Fig. 4(a). As one can see the light source
is located in the upper left corner of the scene. The result obtained by our method as
well as the ground truth are shown in Fig. 4(c) and Fig. 4(b), respectively. Evidently,
the reconstructed shape looks very realistic. Moreover, in order to evaluate the impact
of the general model on the reconstruction quality, we compared our result to the one
of a perspective SfS method based on the restricted brightness equation, i.e. where
the light source is assumed to be in the optical centre of the camera. As one can see
from the corresponding result in Fig. 4(d), this method fails completely. This shows
that the generalised brightness equation is essential for the success of SfS in practical
applications – in particular if the assumption that the light source is close to the optical
centre of the camera does not hold.

In our second experiment, we applied our perspective SfS technique for the general
case to a real-world image. This image shows a sculpture that depicts the head of a frog
(see Fig. 5(a)). This time, the light source is located in the right centre of the scene. Once
again, we can see that the reconstruction looks reasonable. Thereby, we have to keep in
mind that the head of the frog is reconstructed from the viewpoint of the light source.
Moreover, this experiment shows nicely that the discrepancy between the position of
the light source and the optical centre of the camera should not be too large. While
the general model is capable of handling such situations, the overlap between both
viewpoints may become quite small. In that case, the reconstruction will only show a
very small part of the original object. In our experiment, however, the reconstructed part
is still sufficiently large to give a good impression of the overall object surface.

The runtime of our approach is in the order of 40 seconds for a megapixel result,
i.e. a reconstruction of size 1024× 1024. Please note that this runtime is not related to
the size of the input image, but the angular sampling of the radial depth (i.e. of θ, ϕ).



Generalised Perspective Shape from Shading in Spherical Coordinates 11

(a) Frog input image. (b) Our method. (c) Our method, rotated view.

Fig. 5. The Frog experiment.

8 Summary

In this paper we proposed a novel model for perspective SfS for the general case. Unlike
previous methods that restricted the position of the light source to be located in the
optical centre of the camera, our model allows the light source to be placed anywhere in
the scene. In this context, a formulation of the problem as Hamilton-Jacobi equation in
terms of spherical coordinates turned out to be very useful: On the one hand, it allowed
us to formulate the brightness equation for the complex general case in a very compact
and elegant way. On other hand, it enabled us to determine critical points and thus to
develop a specifically tailored variant of the highly efficient FM scheme as solver for
our model. Experiments have shown that our method works well in practice and that
it gives reconstructions of good quality. It even allows to obtain results in those cases
where standard models based on the restricted brightness equation fail. This shows that
considering alternative parametrisations can be worthwhile in many computer vision
problems. They may turn an originally difficult problem into a simple one - from both
a modelling and a numerical viewpoint.
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